Repeat-until-success quantum repeaters

نویسندگان
چکیده

منابع مشابه

A repeat-until-success quantum computing scheme

Recently we proposed a hybrid architecture for quantum computing based on stationary and flying qubits: the repeat-until-success (RUS) quantum computing scheme. The scheme is largely implementation independent. Despite the incompleteness theorem for optical Bell-state measurements in any linear optics set-up, it allows for the implementation of a deterministic entangling gate between distant qu...

متن کامل

Quantum arithmetic and numerical analysis using Repeat-Until-Success circuits

We develop a method for approximate synthesis of single–qubit rotations of the form e−if(φ1,...,φk)X that is based on the Repeat-Until-Success (RUS) framework for quantum circuit synthesis. We demonstrate how smooth computable functions f can be synthesized from two basic primitives. This synthesis approach constitutes a manifestly quantum form of arithmetic that differs greatly from the approa...

متن کامل

Efficient synthesis of universal Repeat-Until-Success circuits

Recently, it was shown that Repeat-Until-Success (RUS) circuits can achieve a 2.5 times reduction in expected depth over ancilla-free techniques for single-qubit unitary decomposition. However, the previously best-known algorithm to synthesize RUS circuits requires exponential classical runtime. In this work we present an algorithm to synthesize an RUS circuit to approximate any given singlequb...

متن کامل

Repeat-until-success: non-deterministic decomposition of single-qubit unitaries

We present a non-deterministic circuit decomposition technique for approximating an arbitrary single-qubit unitary to within distance that requires significantly fewer non-Clifford gates than deterministic decomposition techniques. We develop “Repeat-Until-Success” (RUS) circuits and characterize unitaries that can be exactly represented as an RUS circuit. Our RUS circuits operate by conditioni...

متن کامل

All-photonic quantum repeaters

Quantum communication holds promise for unconditionally secure transmission of secret messages and faithful transfer of unknown quantum states. Photons appear to be the medium of choice for quantum communication. Owing to photon losses, robust quantum communication over long lossy channels requires quantum repeaters. It is widely believed that a necessary and highly demanding requirement for qu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review A

سال: 2014

ISSN: 1050-2947,1094-1622

DOI: 10.1103/physreva.90.032306